Dissertation Major Project Module Code: MOD002497

Evaluation of CROS, BAHA and CI as Management Strategies for Single Sided Deafness (SSD).

Abbreviation: AN = Acoustic Neuroma; AV = aversiveness to sound; BAHA = Bone Anchored Hearing Aid; BTE = Behind the ear; BGN = background noise; BiCROS = Bilateral Contralateral Routing of Signal; CI = Cochlear Implant; CROS = Contralateral Routing of Signal; dB = Decibels; dB SPL = decibel sound pressure level; DSP = Digital Signal Processing; EC = ease of communication; HHIE = Hearing handicap inventory for the elderly; HINT = Hearing in Noise Test; HL = Hearing Level; IDT = Interaural Time Difference; ILD = Interaural Level Difference; IOI-HA = International Outcome inventory for hearing aids; MD = Meniere's disorder; NHS = National Health Service; NIHR = National Institute for Health Research; NE = Norman ear; PE = Profound ear; RF = Radio frequency; RTS = Reception thresholds for speech; RV = reverberant condition; SNR = Signal to noise ratio; SSD = Single-Sided Deafness; SSNHL = sudden sensorineural hearing loss; SSQ = Speech Spatial and Quality questionnaire; SLT = Sound localization test;

Abstract

Objectives: To assess the effectiveness of contralateral routing of signal (CROS) hearing systems, bone anchored hearing aids (BAHAs) and cochlear implants for the management of single sided deafness.

Study Design: A literature review of research criteria on case studies assessing SSD by means of subjective quality- of-life questionnaires and objective clinical assessment.

Key Words: Single sided deafness, CROS, BAHA, CI.

Method: A search was carried out for clinical research papers on SSD between 2009 and 2015. 46 research papers were found in total. Studies were excluded where the study sample was too small, data was inconclusive or missing. 14 papers in total were finally included that looked into analysis of one management strategy or a comparison of two or more strategies using subjective self-reported questionnaires and outcome measures.

Results: Patients with SSD experience significant difficulty with localization of sound and have considerable difficulty with clarity of speech in background noise (BGN). This has a negative effect on their social and secular lives. Regardless of the management strategy used for SSD, self-reported subjective benefit is reported to be significant to the patient even in studies where clinical objective measures show little to no benefit. There are varying results across the studies, with conflicting information, at times regarding effectiveness. It is perhaps that the clinical assessments themselves lack parity with real life listening environments and therefore qualitative results are questionable. In view of the wide variety of outcome measures used comparisons between studies is difficult.

Conclusion: All three fitting strategies have been used successfully to provide some degree of benefit to SSD patients. Further clinical research needs to be done to objectively quantify the effectiveness of intervention. Continuity of quality-of-life questionnaires and outcome measures used would make comparative analysis between studies more achievable. Self-reported questionnaires indicate patient significant patient satisfaction where clinical analysis reveals little or no benefit. Revision of the clinical tests used may be necessary in order to achieve a test battery that achieves a closer correlation to 'real world' scenarios. Clinicians need to be aware of the current management strategies used for SSD, assess patients on a case by case basis and provide best possible advice regarding suitability then facilitate referral.

Introduction:

Single-sided deafness (SSD) is defined as a severe-to-profound sensorineural hearing loss with hearing thresholds >70dB at 500Hz, 1kHz, 2kHz and 3kHz in one ear and essentially normal hearing thresholds in the contralateral ear. Prevalence is estimated to be 3-6% of the population and affects an estimated 7500 new individuals annually in the United Kingdom (Martin 2010) and 60 000 in the USA (Weaver 2015).

Congenital SSD occurs at a ratio of 1:3700 in new-borns and between 0.2% - 0.5% in children and teenagers (Giardina 2014). Of the acquired SSD aetiologies, idiopathic sudden sensorineural hearing loss (SSNHL) is the most common. Other causes include vestibular schwannomas, direct trauma temporal bone fracture, intractable Meniere's disease, unilateral noise damage and ototoxic drug exposure (Ryu 2015) (Giardina 2014) (Kitterick 2014).

Patients with SSD commonly report significant difficulty with localization of sound and lack of clarity of speech in back ground noise (BGN). With self-reported subjective handicap measurements preintervention, research suggests patients with SSD rate clarity of conversation in BGN as their most significant difficulty.

In terms of degree of difficulty, in one such assessment of 53 post-operative acoustic neuroma (AN) patients, 83% reported a moderate to severe hearing handicap in every-day life (Desmet 2012).

This is consistent with a similar study of 59 postoperative AN patients where 80% reported a significant hearing handicap (Schroder 2010). Such pre-intervention analysis is invaluable in determining the patient's perception of their handicap as well as setting a bench mark for outcome measures to assess degree of improvement following intervention.

A considerable hearing difficulty can have a debilitating impact on social and secular interaction. The frustration and embarrassment of mishearing can lead to exclusion, withdrawal and subsequent

social isolation. According to a report published by the Advisory Group for Single Sided Deafness, 24% of sufferers gave up work as a result of their SSD (Dimmelow 2003).

Similarly, a study of 447 SSD patients reported 39% found work more difficult in view of their hearing loss, 45% were afraid of offending people by mishearing and 25% were forced to stop working because of hearing difficulties (Taylor 2010).

Age of onset and the length of time SSD has existed prior to treatment may influence the outcome of any intervention. Previous studies suggest reorganisation of auditory and language pathways occur within weeks of onset. If left untreated, the cortical changes occurring with neural plasticity can negatively affect hearing performance and the rehabilitation to corrective amplification (Ryu 2015).

Current treatment options are Contralateral Routing of Signal (CROS) hearing aids, Bone Anchored Hearing Aids (BAHA) and Cochlear Implants (CI). Management strategies for SSD need to address the commonly reported difficulties of poor sound localization and address the lack of clarity of speech in noise.

Localization

In order to correctly identify the location of unseen sound sources, we rely heavily on a fully functional binaural auditory pathway to supplement information obtained from visual cues. With SSD, the lost ability to process sound binaurally creates a number of hearing difficulties. Binaural cues of interaural time and intensity that facilitate localization are distorted or absent. Sounds originating from the direction of the impaired ear are attenuated when arriving at the non-impaired ear (Kitterick 2015).

Directional interactions of soundwaves with the pinna, head and torso, provide unique cues that are used for the localization of sounds in the vertical plane. Horizontal sound localization is based on the processing of binaural acoustic differences, in interaural time differences

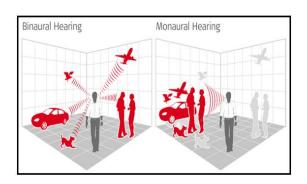


Figure 1. Binaural verses Monaural Hearing and Localisation of Sound (Medel.com)

(ITDs) and interaural level differences (ILDs). Because the binaural sound-localization cues are absent in listeners with SSD, localization of sound is heavily impaired (Agterberg 2014).

Speech in Noise

Clarity of speech in noise is a challenge for SSD patients in view of the lost binaural functions of loudness summation, binaural squelch and the head shadow effect.

Binaural Loudness Summation

It is recognized that binaural hearing is beneficial to loudness and that sound presented to both ears is perceived as being louder than the same signal presented to a single ear. This psychophysical effect is termed binaural loudness summation. It amounts to approximately +6dB at 50dB HL. SSD will result in the loss of this natural sound perception enhancement (Staab 2015).

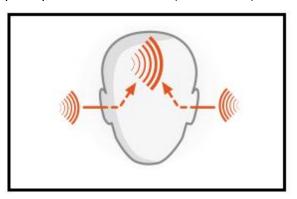


Figure 2. Binaural Loudness Summation (Medel.com)

Binaural Squelch

Binaural squelch is the difference in performance between monaural listening of the ear with the better signal to noise ratio (SNR), and binaural hearing in the condition where the speech and noise are presented on opposite sides. Spatial separation of both ears leads to improved intelligibility and signal identification by taking advantage of differences between the competing signals to the ears.

It is the brain stem nuclei's ability to compare differences in time-of-arrival, amplitude, phase and integrate the different signals being received at each ear. Sounds are integrated separated and prioritized. For this effect to take place, neural integration from both auditory pathways is required.

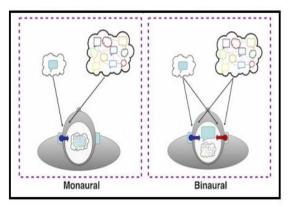


Figure 3. Binaural Loudness Squelch (Staab 2015)

Intra-aural phase and intensity relationships differ for speech and noise. The central nervous system uses these differences to suppress environmental sounds and improve speech intelligibility. This is because speech and noise are received differently at the two ears enhancing the signal and reducing the noise. With SSD the binaural squelch effect will be redundant.

The practical implication of the difference between monaural and binaural listening is as follows: With monaural hearing, when the listening ear is unfavourably situated, the listener is confronted with much greater masking from background noise.

The handicap is reversed when the good ear is toward the primary signal and the bad ear is toward the noise (Staab 2015).

Head Shadow Effect

The head-shadow effect is an acoustic phenomenon whereby speech and competing noise are spatially separated. The SNR at each ear are essentially different due to the filtering of sound by the physical characteristics of the head.

The listener can focus on the more favourable SNR to maximise speech intelligibility and sound localization.

The head shadow effect does not rely on central auditory processing and produces the most robust effect of binaural listening with improvements of 4-7dB (Balkany 2013).

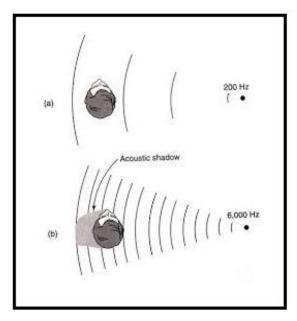


Figure 4. Head Shadow Effect – High vs Low Frequency Wavelength (nasimclinic.com)

The average diameter of the head is about 20 centimeters (cms). The wavelength of a 1 kHz tone in air is about 30 cms.

For signals with wavelengths longer than the head diameter, the signal bends around the head and the sound pressure levels at the two ears differ by less than 5dB. At high frequencies, the shadow effect can be as much as 15 dB (Clark 2000).

For pure tones, perceived lateral displacement is proportional to the phase difference of the received sound at the two ears. However, at approximately 1500Hz, the wavelength of a tone becomes comparable to the diameter of the head, and ITD cues for azimuth become ambiguous.

At frequencies above 1500Hz, the head starts to shadow the ear further away from the sound, so that less energy arrives at the shadowed ear than at the non-shadowed ear.

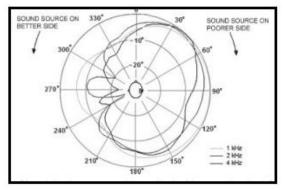


Figure 5. Polar plot Head shadow effect 1000, 2000, 4000Hz (Taylor 2010)

The difference in amplitudes at the ears is the ILD and has been shown to be perceptually important to horizontal decoding of frequencies above 1500Hz (Cheng 1999).

With SSD, sounds that originate on the side of the deaf ear are lost to the listener completely. Low-frequencies with longwavelengths bend around the head and are often perceived well even though the deaf ear may be turned in the direction of the sound.

High-frequencies with short-wavelengths do not bend around to the side of the good ear. Thus many high-frequency sounds are lost to a person with SSD.

Consonant sounds in speech above 1kHz can often be missed and clarity of conversation is compromised (Clason 2014). Since complex listening environments present combinations of sounds across the frequency range, processing speech sounds and separating speech from unwanted noise is significantly harder with SSD.

This attenuation, or head shadow effect, caused by the diffraction of sound waves as they travel around the head, can compromise speech intelligibility in more challenging listening environments (Kitterick 2015). Patients with SSD have up to 13dB signal-to-noise ratio deficit when compared with normal-hearing individuals in the same listening environment (Taylor 2010).

Overview of CROS BAHA & CI Fitting Strategies for SSD

In view of the significant sensorineural degradation in the affected ear, conventional hearing aids are ineffective in treating SSD.

With an understanding of the challenges presented with SSD, we can consider hearing aid intervention and make comparisons of their effectiveness. Three management strategies are considered here-CROS systems, BAHA and CI.

Contralateral Routing of Signal (CROS)

A modern CROS system comprises of hearing aids situated near both the impaired and the normal ear. The two aids are linked wirelessly and communicate with each other.

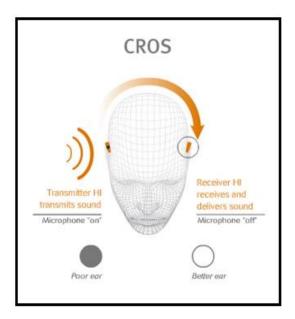


Figure 6. CROS system (audiohealth.com)

Reference directional microphones are worn in the impaired ear and they transmit collated sounds to the aid worn in the better ear.

Out of the three treatment options, CROS systems are the cheapest and the only non-surgical option and therefore realistically used as the first management strategy for SSD (Rhu 2015).

Bone Anchored Hearing Aid (BAHA)

A BAHA is an osseointegrated implanted device surgically attached to the mastoid bone with a titanium screw. The unit consists of a microphone, amplifier and receiver that transmits sound collated from the side of the non-functioning cochlear to the functioning cochlear via bone conduction.

The titanium screw is surgically attached to the skull and is a permanent fixture. The BAHA itself can be attached and removed. An alternative fitting option is a subcutaneous plate and magnetic BAHA. With this fitting option there is a loss of approximately 10dB in view of the transcutaneous sound delivery.

The BAHA has been an effective means of sound delivery to the unaffected ear and it has been increasingly used as a management strategy for SSD patients.

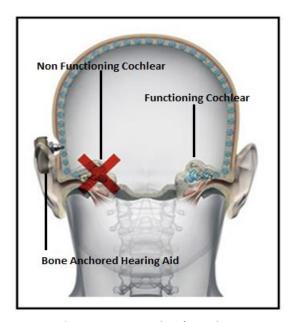


Figure 7. BAHA – Signal Routing (surgery.arizona.edu)

Cochlear Implant (CI)

A cochlear implant is a small surgically implanted electronic device that provides stimulation directly to the auditory nerve.

The implant consists of an external portion resembling a conventional behind the ear (BTE) hearing aid that sits behind the ear and a second portion that is surgically placed under the skin.

The collated sound picked up by the external microphone is processed and transduced into electrical impulses by the

implant and delivered directly into the cochlear via the electrode array (NIDCD 2014).

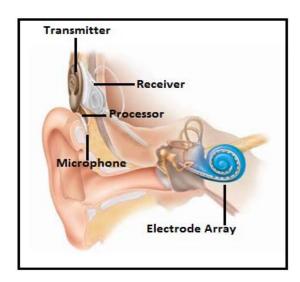


Figure 8. Cochlear Implant – (Drpaulose.com)

Clinical Evaluation of CROS systems

Since their first appearance in the 1960s CROS systems have been used to treat SSD (Harford 1965). Bilateral Contralateral Routing of Signal (BiCROS) are used for a severe to profound sensorineural hearing loss in one ear and a loss in the contralateral ear that can be corrected by conventional amplification.

The sound is collated from the poorer ear and directed to the better ear along with corrective amplification according to the loss in the better ear. Manufacturers have developed wireless, discrete, light-weight aesthetically pleasing fitting options that can provide effective routing of collated sound from the poor ear to the normal ear.

All Current CROS systems use Radio Frequency (RF) transmission that have limitations in range. If the distance between the two hearing aids is greater than six-and-a-half inches, the sound quality is negatively affected. For every half inch additional distance, there can be as

much as a 4dB decrease in gain. CROS devices are also prone to electromagnetic interference and can generate an audible humming or buzzing sound when in proximity to certain electrical devices. Variance in acceptance rates for CROS fittings is reported to be between 50% and 77.5%. Successful fittings have been linked to high levels of motivation by the user (Valente 2006) (Taylor 2010).

evaluation clinical assessed the effectiveness of CROS systems fitted to twenty-one SSD patients (8 <40 years and 13>40 years). Three subjective satisfaction questionnaires were used: the Hearing Handicap Inventory for the Elderly (HHIE) (Weinstein 1986); the International Outcome Inventory for Hearing Aids (IOI-HA) (Cox 2003) and the Speech Spatial and Quality (SSQ) questionnaire (Gatehouse 2004).

The objective measures used were the Sound Localization Test (SLT) and the Hearing In Noise Test (HINT) (Nilsson 1994). The patients were assessed prefitting, and again at two and four weeks post-fitting. All patients reported improvements with emotional, situational and total scores with HHIE, SSQ and IOI-HA.

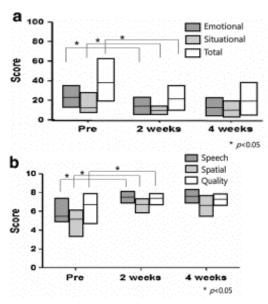


Figure 9. Results (a) HHIE (b) SSQ (Ryu 2015).

For the HINT assessment, each patient was tested in a free-field environment with eight speakers placed from 0 degrees to 360-degree azimuth.

Stimulation sound was generated at 0, 90 and 270 degrees azimuth during the HINT test - six speakers separated by 45 degrees (with the exception of 0 and 180 degrees) during the SLT.

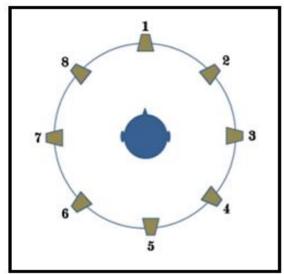


Figure 10. Speaker placement for HINT and SLT (Ryu 2015)

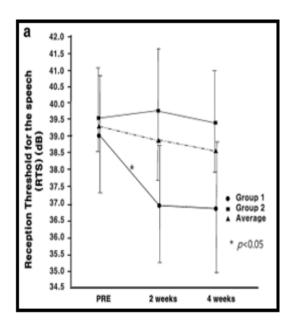


Figure 11. HINT results for quiet test environment (RYU 2015)

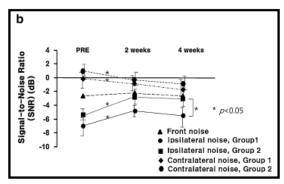


Figure 12. HINT results for noisy condition – noise from front, ipsilateral and contralateral side (Ryu 2015)

The results of the HINT reflected significant improvement with reception thresholds for speech (RTS) in quiet. No significant benefit was recorded when noise was presented from the front. However, the signal to noise ratio (SNR) significantly improved when nose was presented from the normal ear (contralateral noise).

There were improvements in both groups with SLT results after two and four weeks. The younger group showed significant improvement with localization hit rate and error degree (Ryu 2015).

A similar study of twenty-one patients using CROS systems used the APHAB for subjective questionnaire the assessment and HINT for the objective measure. According to the APHAB, the perceived benefit in the aided condition was rated between 32.4% and 40.7% by the patients, yet the HINT revealed no significant difference between the aided unaided condition. The study concluded that directional microphones and an independent volume control may further improve patient satisfaction and improve clarity of conversation in BGN.

There is a high degree of variance regarding effectiveness of CROS fittings. In view of the fact that CROS systems remain the only non-surgical management option

for SSD, it should be considered as a first treatment protocol.

Patients that show little to no benefit from CROS aids can be referred to implant centres for further assessment for BAHAs or CIs. A patient that cannot benefit from conventional hearing aids may be considered for implantation and a hearing aid trial is currently a pre-requisite for consideration.

Clinical Evaluation of BAHAs

BAHAs have been used to treat SSD since the mid-1990s. Several clinical evaluations have been conducted and reports on effectiveness vary.

A case study assessed 58 SSD patients with BAHAs. The Glasgow Benefit Inventory (GBI) (Gatehouse 1999) and SSQ subjective assessments was used and the results suggested a slight improvement with clarity of speech in quiet and small groups. However, little to no benefit in BGN. (Martin 2010).

Conversely, 36 SSD patients were assessed in another study that reported improved performance for speech in noise but no improvement with localization of sound. Patients were assessed with GBI, Abbreviated Profile of Hearing Aid Benefit (APHAB) (Cox 1995) and the Entific Medical System Questionnaire (EMSQ) (Dutt 2002). These subjective measures and the test battery included a simplified speech in noise test.

The manner of the free field testing assessed both the issues of localization and speech in noise. Patients were placed in a free field environment in the middle of an array of speakers.

For the speech in noise assessment, a 65dB SPL white noise was presented at 0-degree azimuth and speech presented at 90-degrees to the poorer ear at intensities between 60 and 75dB.

For the localization test, short bursts of white noise stimuli were presented in a random pattern through the speaker array (similar to the array layout in Figure 10). Hit scores reported for correct and incorrect identification of the sound source.

The clinical evidence suggested an eleven percent improvement when comparing aided and unaided thresholds for speech in noise testing. However, no improvement in the sound localization test was indicated. The review concluded that BAHAs were a successful management strategy for SSD offering improvements for clarity of speech in noise. Self-reported questionnaires completed pre-fitting and post-fitting, suggested the subjective benefits of BAHA to be significant (Nicolus 2012).

An earlier study of twenty-one SSD patients used APHAB and GHABP as the subjective assessment and the HINT to objectively assess speech discrimination. The APHAB assessment of perceived improvements in ease of communication (EC), reverberant conditions (RV) background noise (BN) and aversiveness to sound (AV) reflected mean average improvements of 16.2%, 18.2%, 26.4% and 9.5% respectively. The GHABP results also suggested significant improvement in the aided condition and the HINT results showed an improvement of 5.5dB SPL with the signal to noise ratio (SNR) in the aided condition (Yeun 2009).

A thorough review of twenty-one BAHA patients was carried out assessing speech discrimination objectively with CNC, HINT

and NU-6 (North-western University Test No.6) (Wilson 1976) and subjectively with GBI. There were significant improvements in all domains. The results recorded the mean average improvement in the aided condition to be: CNC 43.2%, HINT 44.5%, NU-6 31.5%. The subjective benefits recorded with GBI were high with 91% of the patients happy to recommend the BAHA fitting for SSD (Wazen 2010).

It is noteworthy to mention that all BAHAs fitted prior to 2013 are analogue. Digital BAHAs have been fitted since 2013 and the Digital Signal Processing (DSP) can offer additional features promising to offer greater benefits for directionality with directional microphones and improved localization. To my knowledge, there are no current published studies that have clinically assessed the effectiveness of the new technology platforms or new features benefits and of DSP, directional microphones or assistive devices.

There are also additional accessories offering direct streaming of television and telephone and remote microphones to help to address the signal to noise ratio in back ground noise. Remote controls offer further regulation of volume and directionality of microphones for specific listening environments.

Clinical evaluation is yet to address the functional benefits and quantify the improvements of localization and clarity of digital BAHAs and assistive devices. Thus, further studies are needed to address this. When comparing the vast improvements achieved in modern technology with conventional digital hearing aids, it would be realistic to expect improved performance with digital BAHAs.

One question we may consider is: Why is it that self-reported quality-of-life questionnaires indicate that patients experience greater benefit than the clinical evidence obtained? A review of current clinical assessments will be considered in the 'Clinical Evaluation: Challenges with Validation and Comparison' section of this review.

.

Clinical Evaluation of CROS verses BAHAs

Very few studies have evaluated clinical effectiveness of CROS systems verses BAHAs. One study assessed ten patients with the two devices by means of an eightweek trial of each device. The patients were asked to complete three subjective benefit questionnaires APHAB, SSQ and SSD.

They were further evaluated objectively with a sound localization test and a speech in noise test. The sound localization test was performed with a 9-speaker array at 30 degree intervals. The speech in noise test consisted of spectrally shaped noise presented in front of the patient. 'Short everyday sentences' were presented to the profound ear (PE) and the normal ear (NE).

The lateralization test showed no improvement with either the CROS or BAHA system. For the speech in noise test, the CROS system showed slight improvement when speech was presented to the NE. However, no improvement was recognized when presented to the PE.

The study does not specify which sentences were used for the speech in noise test.

The results from the subjective self-reported questionnaires shows the highest satisfaction scores to be with the BAHA. The pilot study has limited benefit and is restricted by the small study sample. In its discussion section, the author acknowledges this and suggests that a more robust study sample would prove to be more beneficial therefore offering more conclusive evidence.

During the 8-week trial the patients would have had sufficient time to use each device in their normal day to day areas of difficulty. From the response on the questionnaires, it suggests the patients found overall more consistent performance with the BAHA. The trial of using a BAHA on a headband results in a loss of 10 dB of gain in view of the sound (transcutaneous delivery verses percutaneous).

The clinical assessment design may benefit from using the HINT or at least provide clarification on the sentence structure used for the basis of their assessments.

There is a need for further clinical evaluation to validate and quantify the differences in performance of CROS systems and BAHAs (Hol 2010).

Clinical Evaluation of Cis

Cls are a relatively new treatment for SSD. The first UK study on the effectiveness of Cls as a management strategy for SSD is currently being carried out by the Nottingham Hearing Biomedical Research Unit of the National Institute for Health Research (NIHR) by Pádraig Kitterick. The results are yet to be published.

The study is registered with ISRCTN Registry (International Standard Registered Clinical/soCial sTudy Number) and the registration states that the proposed number of patients to be used is ten (ISRCTN 2015). Given the variables expected with individual performances related to rehabilitation to CIs, a larger study sample would provide a more robust platform for analysis (Kitterick 2014).

A similar controlled trial in the recruitment faze in the Netherlands will evaluate one hundred-and-twenty SSD patients after cochlear implantation. It aims to assess CROS systems, BAHAs and CIs as a management strategy for SSD.

The study will use several self-reported quality-of-life questionnaires: SSQ, APHAB, GBI. Objective assessments will assess speech in noise and localization. A larger study sample of this nature is likely to provide more conclusive data for analysis purposes (Peters 2015).

One published study assessed twenty-six CI patients with SSD using CNC and AzBio (Spahr 2012) sentences with pre-operative and post-operative evaluation over a twelve-month period. The study included ten patients with Meniere's disorder (MD) that had been implanted following a labyrinthectomy. The labyrinthectomy is the destruction of the vestibular system to prevent transmission of sensory information to the brain to eradicate chronic vertigo (VDA 2015).

The CI has been used to successfully treat the resultant sensorineural hearing loss, tinnitus and vertigo. The electrical stimulation with the CI helps to restore auditory perception to the affected ear. Pre-operative assessments were CNC, Azbio sentences and a sound localization test. The sound localization test was performed using an eight speaker array on a 180-degree arc.

There was a high degree of variation amongst the test subjects. Despite this, the mean average CNC word scores reflected an overall improvement of 28% and 40% improvement with AzBio sentence recognition. Most, but not all improved with sound localization.

All of the Meniere's labyrinthectomy patients reported complete resolution of their vertigo and most patients experienced relief from tinnitus while the CI was turned on (Hansen 2013).

There seems to be a high degree of variance in performance with CI candidates and studies that use smaller numbers of test subjects report higher variance. One such study assessed 9 CI candidates by means of sound localization testing and speech testing using AzBio sentences.

The results from the study were so varied that no statistical analysis could be made. The sound localization results were generally very poor and speech discrimination scores so varied that statistical analysis revealed no concrete evidence of benefit.

There was no quality-of-life subjective assessment carried out. The study concluded that further research needs to be done to verify clinical data and to address the variance in individual performance (Zeitler 2015).

Discussion: Clinical Evaluation-Challenges with Validation and Comparison

In clinical evaluation of management strategies, self-reported questionnaires and outcome measures are essential in establishing an index or starting point with which to compare the effectiveness of intervention.

There is however excessive diversity in clinical evaluation. This makes comparison of one clinical trial against the other difficult or impossible. Over the last fifty years there have been no less than one-hundred-and-thirty-nine self-reported hearing-specific questionnaires. Of these, one-hundred-and-eleven were primary questionnaires and twenty-eight were variations of the original.

In total, there were three-thousand-sixhundred-and-eighteen questions across all the primary questionnaires. The median number of items per questionnaire was twenty; the maximum was one-hundredand-fity-eight (Akeroyd 2015).

The clinical studies all identify the fundamental issues with SSD as being difficulties with localization of sound and lack of clarity of speech in background noise. Butt are the clinical tests currently being used adequately to quantify the handicap or effectiveness of intervention?

Sound Localization Test

The sound localization tests vary in arrangement; number of speakers used; intensity levels; test procedure; tone presentation; recording of sample rate and subject matter. It would appear that the end result is a clinical assessment that does not relate to 'real world' listening or correlate with other clinical assessments in view of diversity.

If a benchmark could be set for an agreed speaker array; sound presentation and recording of data, more accurate comparisons between studies could be possible. It would also be more accurate in quantifying the handicap and success of intervention.

Speech in Noise Test

The speech in noise assessments again have variation in presentation; test procedure; masking levels; masking noise; word lists; sentences and speaker array.

Variations of the HINT test have been used in some of the clinical evaluations. The variations make direct comparison against another study impossible. The unique handicap of speech in noise experienced by SSD patients, may call for the development of clinical speech in noise testing specifically for SSD.

It would seem sensible to use speech babble as a masking noise and test patients with sentence presentations, varying the intensity of the background noise, consequently assessing speech signal presented to the PE and NE. This will provide a signal to noise ratio index unique to each patient that could prove useful for device programming purposes.

More importantly, it will also achieve an index with which to use as a comparison against other test subjects in the study as well as provide data for comparison against other studies.

Quality of Life Questionnaires

Some outcome measures such as APHAB, GBI and GHABP relate to hearing loss in a general sense. Comparatively the SSQ questionnaire may be more relevant to SSD clinical evaluation in view of its analysis of speech, spatial and quality assessment.

While the clinical assessment reflects little or no improvement in the aided condition following intervention, the quality of life self-reported questionnaires reflect more positive results in everyday life.

In the UK, CROS systems BAHAs and CIs are the management strategies used for treating SSD. It would be beneficial for centres to reach an agreement in protocols for clinical evaluation and use quality-of-life questionnaires and outcome measures that were consistent. This would facilitate the use of collective data in assessing the effectiveness of intervention.

Conclusion

CROS systems are the only current nonsurgical management strategy for SSD. Patients report positive results with using CROS systems, however results vary considerably. Patients that do not benefit from CROS can be referred to implant centres for evaluation for BAHAs and CIs. Although significant variance in effectiveness is recorded in clinical evaluation, patient satisfaction is generally high when rating intervention in 'real world' scenarios. Advancements technology with the introduction of digital BAHA and assistive devices, increased patient satisfaction and increased benefit should be realised. Further research is needed to clinically verify and quantify these improvements.

CIs have successfully been fitted to treat SSD. It is the only fitting strategy to offer restoration of speech perception. There is likely to be a growing demand for cochlear implantation for the treatment of SSD.

Clinicians need to be aware of the current strategies for managing SSD, assess patients on a case-by-case basis and be familiar with referral protocols for implant centres.

Further clinical evaluations are likely to be conducted in the future. It would be useful to have continuity of self-reported quality of-life-questionnaires and outcome measures to facilitate comparisons and correlations between studies.

Figure 13: Literature Review- Comparative Benefits of Contralateral Routing of Signal (CROS) Systems, Bone Anchored Hearing Aids (BAHA) and Cochlear Implants for the management of Single-Sided Deafness.

y Subjects AP Yuen 2009 21 AP Wazen 2010 21 AP Wazen 2010 21 AP Martin 2010 21 AP Schroder 2010 21 AP Firszt 2012 25 AP Firszt 2012 3 AP Micolus 2012 3 AP Hensen 2012 3 AP Hensen 2012 3 AP Granthem 2012 3 AP Granthem 2013 26 AP Granther 2013 21 AP Granther 2015 9 AP	ICON INC.	No of Test	Subjective	Objective	Conclusion
Yuen 2009 21 Wazen 2010 21 Hol 2010 10 Martin 2010 21 Schroder 2010 21 First 2012 25 Nicolus 2012 3 First 2012 3 Hensen 2013 26 Hensen 2013 26 Oeding 2013 21 Zietler 2015 9	Subj	ects	Measurement	Measurement	
Wazen 2010 21 Hol 2010 10 Martin 2010 58 Schroder 2010 21 Pai 2012 25 First 2012 3 First 2012 3 Nicolus 2012 3 Granthern 2012 7 Hensen 2013 26 Deding 2013 21 Zietler 2015 9			PHAB and GHBP	HINT	APHAB improvements of 16.2%, 18.2%, 26.4% and 9.5%.
Hol 2010 10 Martin 2010 58 Schroder 2010 21 First 2012 25 First 2012 3 Granthem 2012 7 Hensen 2013 26 Zietler 2015 9		1	GBI	CNC, HINT, NU-6	Subjective increase in satisfaction GBL.
Hol 2010 10 Martin 2010 58 Schroder 2010 21 Pai 2012 25 First 2012 3 Nicolus 2012 3 Granther 2012 7 Hensen 2013 26 Deding 2013 21 Zietler 2015 9					Speech tests: NU-6 31.5%, CNC 43.2%, HINT 44.5%
Martin 2010 58 Schroder 2010 21 Pai 2012 25 Nicolus 2012 3 Granthem 2012 3 Hensen 2013 26 Oeding 2013 26 Zietler 2015 9		0	SSO, SSDO,	SLT, SRT	Poor Sound localization. Subjective benefit reported.
Martin 2010 58 Schroder 2010 21 Pai 2012 25 First 2012 3 Nicolus 2012 3 Granthern 2012 20 Hensen 2013 26 Oeding 2013 21 Zietler 2015 9			and APHAB		Low acceptance of intervention 30%.
Schroder 2010 21 Pai 2012 25 First 2012 3 Nicolus 2012 20 Granthem 2012 7 Hensen 2013 26 Zetler 2015 9		8	GBI and SSQ	BKB (in noise)	Slight improvement with BKB in noise
Schroder 2010 21 Pai 2012 25 Firszt 2012 3 Nicolus 2012 3 Granthern 2012 7 Hensen 2013 26 Oeding 2013 21 Zietler 2015 9					Subjective benefit of 78% with GBI
Pai 2012 25 First 2012 3 Nicolus 2012 3 Granther 2012 7 Hensen 2013 26 Oeding 2013 21 Zetler 2015 9		1	VAS		Subjective increase in satisfaction,
Pai 2012 25 First 2012 3 Nicolus 2012 30 Granthern 2012 7 Hensen 2013 26 Oeding 2013 21 Zietler 2015 9					however low uptake of BAHA 20%.
First 2012 3 Nicolus 2012 20 Granthem 2012 7 Hensen 2013 26 Oeding 2013 21 Zietler 2015 9		5	520		Overall subjective improvement in satisfaction
Firszt 2012 3 Nicolus 2012 20 Granthem 2012 7 Hensen 2013 26 Oeding 2013 21 Zietler 2015 9					however considerable variation between patients.
Nicolus 2012 20 Granthern 2012 7 Hensen 2013 26 Oeding 2013 21 Zietler 2015 9		3	520	ONC, HINT	High subjective satisfaction, Increased
Nicolus 2012 20 Granthern 2012 7 Hensen 2013 26 Oeding 2013 21 Zietler 2015 9					speech perception and speech in noise performance.
Granthem 2012 7 Hensen 2013 26 Oeding 2013 21 Zietler 2015 9		0	EMSQ, GBI		No improvement with sound localization.
Granthem 2012 7 Hensen 2013 26 Oeding 2013 21 Zietler 2015 9			and APHAB		Subjective high level of satisfaction 73% APHAB, GBL
Hensen 2013 26 Oeding 2013 21 Zietler 2015 9			i	SLT	No significant benefit aided/unaided for localization.
Hensen 2013 26 Oeding 2013 21 Zietler 2015 9					No quality of life questionnaire used.
Oeding 2013 21 Zietler 2015 9		9		CNC, AzBio sentences	28% inprovement in CNC speech scores post
Oeding 2013 21 Zietler 2015 9					fitting. 40% improvement on AzBio sentence scores.
Zietler 2015 9		1	APHAB,	HINT	No significant improvement with HINT aided/unaided.
Zietler 2015 9					APHAB showed significant benefit from aided condition.
Lincor		_	i	AzBio	Poor Sound localization, no conclusive
Light					evidence of improvement with speech regognition.
77	2015 2		HHIE, IOI-HA	SLT and HINT	Subjective increase in satisfaction. Improvements
SSQ and SSQ.			and SSQ		with sound localization and improvements in BGN.

References

Agterberg M., Myrthe K., Van Wanrooij M., Van Opsal J., Snik A. 2014. *Single-sided deafness and directional hearing: contribution of spectral cues and high-frequency hearing loss in the hearing ear.* Healthy Hearing. Encyclopaedia of Otolaryngology, Head & Neck Surgery. Pp. 1098. Accessible from: http://journal.frontiersin.org/article/10.3389/fnins.2014.00188/abstract[Accessed: 16/02/2016].

Akeroyd M., Wright-Whyte K., Holman J., Whitmer W. A comprehensive survey of hearing questionnaires: how many are there, what do they measure, and how have they been validated?

Akeroyd et al. Trials 2015, 16(Suppl 1):P26

Accessible from:

http://www.trialsjournal.com/content/pdf/1745-6215-16-S1-P26.pdf [Accessed 16/03/2016].

Audiohealth.com. Image of CROS system.

Accessible from:

http://www.audiohealth.com.au/wp-content/uploads/2013/09/CROS-PICTURE.bmp Accessed 18/02/2016].

Balkany T., Zeitler D. 2013. *Head shadow effect*. Encyclopaedia of Otolaryngology, Head and Neck Surgery. Pp1098. Accessible from: http://link.springer.com/referenceworkentry/10.1 007/978-3-642-23499-6 200040?no-access=true [Accessed: 24/01/2016].

Cheng C., Wakefield G. 1999. Introduction to the Head-Related Transfer Functions (HRTF's): Representations of HRTF's in Time, Frequency, and Space. Accessible from:

http://www.isr.umd.edu/Labs/ISL/BAIL/hrtf_review.pdf [Accessed: 12/02/2016].

Clark W. 2000. Five Myths in Assessing the Effects of Noise on Hearing – head shadow effect.

Audiology Online. Accessible from:
http://www.audiologyonline.com/articles/five-myths-in-assessing-effects-1292 [Accessed 18/01/2016].

Clason A. 2014. Living in the head shadow of single-sided deafness. Healthy Hearing. Accessible from:

http://www.healthyhearing.com/report/52008-Living-in-the-head-shadow-of-single-sideddeafness [Accessed: 22/01/2016].

Cox R., Alexander g. 1995. The Abbreviated Profile of Hearing Aid Benefit. Ear and Hearing. Accessible from: http://journals.lww.com/ear-hearing/Abstract/1995/04000/The Abbreviated Profile of Hearing Aid Benefit.5.aspx [Accessed: 15/03/2016].

Cox R., Alexander G., & Beyer C. (2003). Norms for the international inventory for hearing aids. International Journal of Audiology. 14(8), 403-413. Accessible from:

http://www.ingentaconnect.com/content/aaa/jaa a/2003/00000014/00000008/art00002 [Accessed: 16/03/2016].

Desmet J., Bouzegta R., Hofkens A., Lambrechts P. 2014. Clinical need for a BAHA trial in patients with single-sided sensorineural deafness. Analysis of a BAHA database of 196 patients. European Archives of Oto-Rhino-Laryngology. Vol. 269, Issue 3, Pp. 799-805. Accessible from: http://link.springer.com/article/10.1007/s00405-

Dimmelow k., Fitzgerald A., Johnson I., Mendelow A., Shackelton C. 2003, *Hear the other side – A report on Single Sided Deafness 2003*. Accessible from:

011-1733-5 [Accessed 14/02/2016].

http://www.readbag.com/singlesideddeafness-ssd-report [Accessed 12/02/2016].

Dutt S., McDermott A., Jelbert A, et al. 2002. *Day to day use and service related issues with the bone anchored hearing aid: the Entific Medical Systems Questionnaire*. J Laryngol Otol 2002;28:20Y8. Accessible from:

http://europepmc.org/articles/PMC3068630 [Accessed 15/03/2016].

Drpaulose.com. Image: *Cochlear Implant*. Accessible from:

http://www.drpaulose.com/wp-content/uploads/cochlear-implant21.jpg [Accessed: 17/02/2016].

Gatehouse. S. (1999). Glasgow Hearing Aid Benefit Profile: Derivation and validation of a client-centred outcome measure for hearing aid services. Journal of the American Academy of Audiology, 10, 80-103. Accessible from:

http://www.audiology.org/sites/default/files/journal/JAAA 10 02 03.pdf [Accessed: 15/03/2016].

Gatehouse S., Noble W. (2004). The Speech, Spatial and Qualities of Hearing Scale (SSQ)." International Journal of Audiology; 43, 85 -99. Accessible from: http://www.audrehab.org/2010%20Institute%20Presentations/DossSabes.pdf [Accessed: 15/03/2016].

Giardina C., Formeister E., Adunka O. 2014. *Cochlear Implants in Single-Sided Deafness*. Current Surgery Reports. Vol.2(12), pp.1-11. Accessible from:

http://link.springer.com/article/10.1007%2Fs4013 7-014-0075-9 [Accessed 12/02/2016].

Handforth E., Barry J. 1965. A Rehabilitative Approach to the Problem of Unilateral Hearing Impairment: The Contralateral Routing of Signals (CROS). The Journal of Speech and Hearing Disorders. 30(2):121-38. Accessible from: https://www.researchgate.net/publication/92999
23 A Rehabilitative Approach to the Problem of Unilateral Hearing Impairment The Contralate ral Routing of Signals CROS[Accessed 14/03/2016].

Hansen M., Gantz B., Dunn C. 2013. Outcome following cochlear implantation for patients with single-sided deafness, including those recalcitrant Meniers disease. Otol Neurotol 34:9. Accessible from:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC38 66094/ [Accessed: 21/03/2016].

Hol M., Kunst S., Snik A., Cremers C. 2010. *Pilot study of the effectiveness of the conventional CROS, the transcranial CROS and the BAHA transcranial CROS in adults with unilateral inner ear deafness.* Eur Arch Otorthinolaryngol. 267: 889-896. Accessible from:

http://link.springer.com/article/10.1007/s00405-009-1147-9/fulltext.html [Accessed: 21/03/2016].

International Standard Registered Clinical/soCial sTudy Number (ISRCTN). 2015.ISRCTN33301739 DOI 10.1186/ISRCTN33301739.Cochlear implantation in patients with single-sided deafness. Accessible from: http://www.isrctn.com/ISRCTN33301739 [Accessed 22/03/2016].

Kitterick P., O'Donoghue G., Edmondson-Jones M., Marshall A., Jeffs E., Craddock, L., Riley A., Green K., O'Driscoll M., Jiang D., Nunn, T., Saeed S., Aleksy W., Seeber B. 2014. Comparison of the benefits of cochlear Implantation versus contralateral routing of signal hearing aids in adult patients with single-sided deafness: study protocol for a prospective within-subject longitudinal trial. BMC ear, nose, and throat disorders. Vol.14, pp.7. Accessible from:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC41 41989/pdf/1472-6815-14-7.pdf [Accessed 12/02/2016].

Kitterick P., Lucus L., Smith S. 2015. *Improving Health-Related Quality of Life in Single-Sided Deafness: A Systematic Review and Meta-Analysis.* Audiology & Neurotrology. Vol.20, p.79-86. Accessible from:

http://search.proquest.com/5E3C174D250F41ACP Q?accountid=8318 [Accessed: 15/01/2015].

Kitterick P., O'Donoghue G., Edmonson-Jones M., Marshall A., Jeffs E., Craddock L., Riley A., Green A., O'Driscoll M., Jiang D., Nunn T., Saeed S., Aleksy W., Seeber U. 2014. Comparison of the benefits of cochlear implantation versus contra-lateral routing of signal hearing aids in adult patients with single sided deafness: study protocol for a prospective within-subject longitudinal trial. BMC Ear Nose and Throat Disorders. Accessible from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC41 41989/ [Accessed 15/01/2016].

Martin T., Lowther R., Cooper H., Holder R., Irving R., Reid A., Proops D. 2010. *The bone-anchored hearing aid in the rehabilitation of single-sided deafness: experience with 58 patients*. Clin Otolaryngol 35, 284-290 Accessible from: http://onlinelibrary.wiley.com/doi/10.1111/j.1749
-4486.2010.02177.x/full [Accessed 14/03/2016].

Martin T., Lowther R., Cooper H., Holder R., Irving R., Reid A., Proops D. 2010. *The bone-anchored hearing aid in the rehabilitation of single-sided deafness: experience with 58 patients*. Clinical Otolyrangology. Vol.35(4), pp.284-290. Accessible from:

http://onlinelibrary.wiley.com/doi/10.1111/j.1749 -4486.2010.02177.x/epdf [Accessed 15/02/2016].

Medel.com. *Image: binaural summation*. Accessible from:

http://www.medel.com/images/ssd blh binaural summation.jpg [Accessed 13/01/2016].

Medel.com. *Image; monaural vs binaural hearing*. Accessible from:

http://i1.wp.com/www.medel.com/blog/wp-content/uploads/2014/04/Binaural_vs._Monaural-Hearing.png [Accessed 13/01/2016].

Nasim Clinic. Image: Head shadow effect.

Accessible from: http://www.nasimclinic.com/wp-content/uploads/2015/01/head-shadow-effect.png [Accessed 20/01/2016].

National Institute on Deafness and Other Communication Disorders (NIDCD). 2014. *Cochlear Implants*. Accessible from: http://www.nidcd.nih.gov/health/hearing/pages/coch.aspx [Accessed 18/02/2016].

Nilsson M., Sigfrid D., Sullivan J. 1994.

Development of the Hearing In Noise Test for the measurement of speech reception thresholds in quiet and in noise. Accessible from:

Ahttp://dx.doi.org/10.1121/1.408469 [Accessed: 15/03/2016].

Nicolas S., Mohamed A., Yoann P., Laurent G.,

Thiery M. 2013. Long-Term Benefit and Sound Localization in Patients With Single-Sided Deafness Rehabilitated With an Osseointegrated Bone-Conduction Device. Otol Neurotol. Jul;34(5):970. Accessible from:

http://www.ncbi.nlm.nih.gov/pubmed/23202156
[Accessed 14/03/2016].

Peters J., Zon A., Smit A., Zanten G., Wit G., Stegeman I., Grolman W. 2015. CINGE-trial: cochlear implantation for single-sided deafness, a randomised controlled trial and economic evaluation. Study Protocol. BMC Ear Nose & Throat Disorders. Accessible from: http://bmcearnosethroatdisord.biomedcentral.com/articles/10.1186/s12901-015-0016-y [Accessed 13/03/2016].

Ryu N., Moon J., Byun H.,Jin S., Park H., Jang K., Cho Y. 2015. *Clinical effectiveness of wireless CROS (contralateral routing of offside signals) hearing aids*. Eur Arch Otorhinolaryngol. Issue 272. Pp 2213–2219. Accessible from: http://link.springer.com/article/10.1007/s00405-014-3133-0/fulltext.html [Accessed 14/02/2016].

Schroder S., Ravn T., Bonding P. 2010. BAHA in Single-Sided Deafness: Patient Compliance and Subjective Benefit. Otology & Neurotology Vol. 31,lssue 3, pp 404-408. Accessible from: http://journals.lww.com/otology-neurotology/Abstract/2010/04000/BAHA in Single Sided Deafness Patient Compliance.7.aspx [Accessed 12/02/2016].

Soton.ac.uk. Image: BAHA image. Accessible from: http://blog.soton.ac.uk/auditory/files/2013/04/BP 100 NyaFixtureniBenbit-300x261.jpg [Accessed 12/01/2016].

Spahr A., Dorman M., Litvak L. 2012. *Development and validation of the Azbio sentence lists*. Ear and Hearing. 33: 112-117. Accessible from: http://www.ncbi.nlm.nih.gov/pubmed/21829134 [Accessed: 22/03/2016].

Staab W. 2015. *Binaural Loudness Summation*. Hearing Matters. Accessible from: http://hearinghealthmatters.org/waynesworld/20 15/binaural-loudness-summation/ [Accessed 12/02/2016].

Staab W. 2015. Binaural Loudness Squelch. Hearing Matters. Accessible from: http://hearinghealthmatters.org/waynesworld/2015/binaural-loudness-squelch/[Accessed12/02/2016].

Surgery.Arizona.edu. Image: *BAHA – SSD Cross section*. Accessible from: http://surgery.arizona.edu/sites/surgery.arizona.edu/files/images/Baha%20for%20SSD.jpg [Accessed: 17/02/2016].

Taylor B. 2010. *Contralateral Routing of Signal Amplification Strategies*. Accessible from: <u>file://C:/Users/Graeme/Downloads/Taylor2010.pdf</u> [Accessed 14/03/2016].

Tillman T., Carhart R. 1966. An expanded test for speech discrimination utilizing CNC monosyllabic words. North-western University Auditory Test 6 SAM-TR-66-55. Accessible from:

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0639638 [Accessed 22/03/2016].

Valente M., k Valente M., Mispagel K. 2006. Fitting Options for Adult Patients with Single Sided Deafness (SSD). Audiology Online. Accessible from: http://www.audiologyonline.com/articles/fitting-options-for-adult-patients-980 [Accessed: 14/03/2016].

Vestibular Disorder Association. 2015. Surgical Procedure for Vestibular Dysfunction. Accessible from: http://vestibular.org/understanding-vestibular-disorders/treatment/vestibular-surgery [Accessed: 22/03/2016].

Wazen J., Van Es J., Alamenda J., Ortega C., Modisett M. 2010. *The BAHA system in patients* with single-sided deafness and contralateral hearing loss. Otology and Neurology, 142: 554-559. Accessible from:

http://www.ncbi.nlm.nih.gov/pubmed/20304277 [Accessed 26/03/2016].

Weaver J. 2015. *Single-Sided Deafness: Causes, and Solutions, Take Many Forms.* The Hearing Journal. Accessible from:

file:///C:/Users/Graeme/Downloads/Single Sided
Deafness Causes, and Solutions,.1.pdf
[Accessed 10/02/2016].

Weinstein B., Spitzer J., Ventry I. (1986). *Test-retest reliability of the Hearing Handicap Inventory for the Elderly. Ear and Hearing, 5*, 295-299. Accessible from: http://journals.lww.com/ear-hearing/Abstract/1986/10000/Test Retest Reliability of the Hearing Handicap.2.aspx [Accessed: 15/03/2016].

Wilson R., Coley K., Haenel J., Browning K. 1976.

NORTHWESTERN UNIVERSITY AUDITORY TEST NO.
6: NORMATIVE AND COMPARATIVE

INTELLIGIBILITY FUNCTIONS. Journal of the

American Audiological Society.

http://journals.lww.com/earhearing/Abstract/1976/03000/NORTHWESTERN_U NIVERSITY AUDITORY TEST NO 6 .9.aspx [Accessed: 26/03/2016].

Williams V., McArdle R., Chisolm T. 2012.
Subjective and objective outcomes from new
BiCROS technology in a veteran sample. J Am Acad
Audiol 23:789-806. Accessible from:
http://www.ncbi.nlm.nih.gov/pubmed/23169196
[Accessed 14/03/2016].

Yuen H., Bodmer D., Smilsky K., Nedzelski J., Chen J. 2009. Management of single-sided deafness with the bone anchored hearing aid. Otology and neurology. 141: 16-23. Accessible from: http://www.sciencedirect.com/science/article/pii/s0194599809001752 [Accessed 26/03/2016].

Zeitler D., Doorman M., Natale S., Loisell L., Yost W., Gifford R. 2015. Sound Source Localization and Speech Understanding in Complex Listening Environments by Single-Sided Deaf Listeners After Cochlear Implantation. Otology and Neurotology. 36: 1467-1471. Accessible from: http://search.proquest.com/docview/1762510292 ?OpenUrlRefld=info:xri/sid:primo&accountid=831 8 [Accessed: 20/02/2012].